
 

Application of fatigue theory 

Both fatigue design equations ( 19), ( 21) indicate that the capacity (the maximum 

continuous power transferrable) is proportional to the cube of the module - ie. a slight 

increase in module enables a large increase in capacity. The following examples 

illustrate application of the equations to analysis and to design.  

 

 

EXAMPLE (analysis)  

A crane traversing gearset is driven at 425 rev/min by an electric motor through primary 

gearing. The open gearset transmits 75 kW. The gears are manufactured to a 

transmission accuracy level of 5, with 8 mm module and 110 mm facewidth from 

through -hardened grade 1 steel, the 20 tooth pinion to 250 BHN and the 53 tooth wheel 

to 180 BHN. The profile shift of each gear is mid-range.  

What life can be expected of the gearset at 99.9% reliability ?  

The life of the pair will be the minimum life for the pinion and for the wheel due to both 

potential failure mechanisms - bending and contact.  

Evaluating the various common factors first :  

Ka  Referring to the table of Application Factors, the input is uniform and the output 

rather less damaging than medium shock, so assume a value of   Ka = 1.15  

Kv  The velocity is needed to evaluate this . . . . D1 = m.z1 = 8*20 = 160 mm, so the pitch 

line speed is   v = πDN = π 0.160*425/60 = 3.56 m/s. Since Q =5 the corresponding 

dynamic factor is   Kv = 1 + √v /3.6 = 1 + √3.56 /3.6 = 1.52 - which tallies with the   

Kv graph.  

Km    The geometry is known, so the parts of   Km may be evaluated -   f/D1 = 110/160 = 

0.688 which gives a pinion proportion factor   Cpf = 0.1 ∗ max( 0.5, 0.688) + max( 0, 

110 - 25)/2000 - 0.025 = 0.086.  

The mesh alignment factor for open gearing of this facewidth is   Cma = 0.247 

+110/1500 - (110/2900)2 = 0.319.  

So the load distribution factor is   Km = 1 +0.086 +0.319 = 1.41  

KR  corresponding to a reliability of 99.9% is 1.25  

I  Since both gears' profile shifts are mid-range, then for a ratio of   53/20 = 2.65,   I = 

0.119 approximately, from ( 22)  



 

Apply the bending design equation ( 19) to find the life factors and hence the lives of the 

two gears. Calculations are shown for pinion only.  

           pinion      wheel    

   tooth number     20  53  

   
bending strength geometry factor,   J, for mid-range shifts, 

from (18)  
   0.462  0.423  

   Brinell hardness number     250  180  

   allowable bending stress,   Sb, from diagram (grade 1)  MPa  220  171  

   

KL = Ka Kv Km KR P / π m2 f N1 z1 J Sb  

      1.15*1.52*1.41*1.25*75 E3 / 

π*0.0082*0.11*(425/60)*20*0.462*220E6  

                            Nm/s   1/m2   1/m   s       check units !       

m2/N  

  -  0.726  1.020  

   corresponding life from   KL plot  Mc  205000  5.4  

   dividing by rotational speed for life in units of time  khr  8020!!  0.56  

   

Apply contact design equation ( 21) in a similar manner to obtain life factors,   CL, and 

hence the lives of the two gears in units of time.  

   allowable contact stress,   Sc, from diagram (grade 1)  MPa  740  585  

   

CL = √( Ka Kv Km E* P / m2 f N1 I ) KR / π z1 Sc  

  √(1.15*1.52*1.41*113E9*75E3/0.0082*0.11*(425/60)*0.119)*1.25 

/ π*20*740E6  

  √(             N/m2   Nm/s   1/m2   1/m   s )                             m2/N  

  -  1.60  2.02  

   corresponding life from CL plot  Mc  ??  ??  

 

The maximum possible contact life factor is 1.47 (refer to the CL graph); since the 

calculated values of   CL for both pinion and wheel exceed this, there is no way that the 

desired reliabilty can be achieved with a reasonable life. Note that   CL ∝ KR above, so a 

substantially reduced probability of survival would result in gears with non -zero lives. 

But the probability of the gears surviving 75 kW with an economic life is low.  

 

 

This example reveals the general truism - pitting of steel gears is much more damaging 

than bending, ie. the life of the gearset is more often than not limited by contact fatigue. 

A gear's capacity is proportional to the square of its allowable surface contact stress ( 

21) so that surface hardening of the tooth flanks (by case- or flame- hardening, by 



nitriding or carburising etc.) leads to a better balanced solution in which the contact -

limited fatigue life may be increased to approach the bending -limited fatigue life. 

AGMA 2001 cites properties for surface -hardened steel gears - allowable contact 

stresses exceeding 2 GPa are possible.  

 

   

EXAMPLE (synthesis)  

Select suitable gears for the final stage of a commercial quality 100 kW gearbox whose 

input and output shafts rotate at 200 and at about 55 rev/min respectively. The box will 

be interposed between an electric motor and a variable density mixer, and should have a 

life of 16 khr with 99% reliability.  

The general design approach, once materials are tentatively selected, is trial -and -error 

choice of tooth numbers which must satisfy the speed ratio limits and which should not 

be too large otherwise compactness suffers. For given tooth numbers, the necessary 

module and facewidth are obtainable from design equations ( 19) and ( 21).  

We shall exemplify design calculations for one particular candidate   z1 = 18   ( z2 = 65) 

and mid-range profile shifts.  

An application factor of 1.25 seems appropriate, though in practice further details of the 

mixer's charge would enable more certainty in this choice.  

From the lessons learned in the previous example, both gears will be made from grade 2 

steel - the pinion will be flame hardened to 52 HRC while the wheel will be through 

hardened to 360 BHN. The pinion's allowable stresses must be obtained directly 

from AGMA 2001 - they are   Sc = 1320 MPa,   Sb = 380 MPa.  

As contact rather than bending is expected to be critical, the gears will be designed for 

contact, then checked in bending.  

           pinion      wheel    

   tooth number    -  18  65  

   allowable contact stress, Sc (grade 2)  MPa  1320  1090  

   life (16 khr*rotational speed)  Mc  190  53  

   life factor corresponding to this life, from graph, CL    -  0.849  0.912  

   product Sc CL to deduce the weaker gear  MPa  1120  994  

 

The wheel is weaker than the pinion in contact fatigue - it might pay to use a somewhat 



less sophisticated pinion material / heat treatment, but any decision will be delayed 

until all results (eg. bending too) are to hand.  

The contact design equation ( 21) will now be solved to obtain an approximate idea of 

the module - and to this end, middle-of-the-road values will be assumed for those 

parameters which depend upon module for evaluation. Thus take :  

o β   = 12, midway between the limits of ( 16)  

o Kv = 1.1 since the pinion rotates fairly slowly at 200 rev/min and so the pitch 

speed will be low  

o Km = 1.2 since the mesh alignment factor cannot be less than 0.13 for 

commercial enclosed gears.  

It is known that   KR = 1, corresponding to a reliability of 99%, and that the contact 

geometry factor   I = 0.127 from ( 22) corresponding to a ratio of 65/18. So applying ( 

21) :-  

        m3   =   Ka Kv Km KR
2   E*     P / π2     β           N1           z1

2     I     ( Sc CL )2  

                1.25*1.1*1.2*12
*113E9*1E5 / π2

*12*(200/60)*182
*0.127*(994E6)2       whence   m = 

10.5 mm  

                                            N/m2   Nm/s                     s                             m4/N2  

A standard module of either 10 or 12 mm is indicated.  

A modules of   m = 12 mm will be tried - this will enable factors to be tightened up when 

using the design equation once again, this time to evaluate the facewidth. Thus :  

Kv  D1 = m.z1 = 12*18 = 216 mm;       v = πD1 N1 = π*0.216*(200/60) = 2.26 m/s     (ie. very 

low as expected)  

Assuming a transmission accuracy level of   Q = 8, then, from the graph,   Kv = 1.26  

Km 

     

Assuming an average value of   β = 9   (on the low side to offset the choice of module 

on the high side of the range around 10.5 mm). Then the facewidth   f = 12*9 = 108, 

say 110 mm which leads to   Cpf = 0.068;   Cma = 0.194   and so   Km = 1 + 0.068 + 

0.194 = 1.26  

So, solving ( 21) for the facewidth ratio,   β, and for the weaker gear :  

        β   =   Ka   Kv     Km     KR
2       E*     P   /   π2       m3         N1           z1

2     I     ( Sc CL )2  

                1.25*1.26*1.26*1.02
*113E9*1E5 / π2

*0.0123
*(200/60)*182

*0.127*(994E6)2     whence   

β = 9.7  

This is within the usual economic range   9 ≤ β ≤ 15   so looks like a practical candidate. 

The face width is   f = 9.7*12 = 116 mm. Take   f = 120 mm - sufficiently close to 110 mm 



to obviate need to update   Km for refined calculations.  

The chosen parameters so far (m = 12 mm, f = 120 mm) will now be checked via the 

bending equation ( 19), from which the bending lives of the two gears will be deduced, 

thus :  

        ( J Sb KL ) i   =   Ka     Kv     Km     KR     P   /   π       m2     f     N1           z1  

                            1.25*1.26*1.26*1.0*1E5 / π*0.0122
*0.120*(200/60)*18       =   60.9 MPa  

                                                                    Nm/s             1/m2   1/m       s  

           pinion      wheel    

   product J Sb KL  MPa  60.9  60.9  

   bending strength - Sb, pinion from AGMA 2001; wheel corr. to 

360 BHN  

MPa  380  360  

   bending strength geometry factor, J, from ( 18)    -  0.464  0.415  

   KL = ( J Sb KL ) / J Sb    -  0.345  0.408  

 

It may be seen from the graph that the lives corresponding to these KL factors are very 

much greater than those specified, ie. bending again is less critical than contact.  

Summarising, the candidate considered utilises a module of 12 mm, a facewidth of 120 

mm, gears of 18 and 65 teeth with mid-range profile shifts and materials as specified 

above. In practice, further design candidates with various steels and heat treatments etc. 

would be carried out to aid an economic assessment. The program Steel Spur Gears is 

based on the foregoing theory and may be used to assist in the design task - a dialogue 

with the program for these examples is provided.  

 

The design example adopts flame hardened teeth on the pinion, however the life of the 

chosen candidate is also dictated by contact. Clearly different materials and surface 

treatments are design variables which, together with different tooth numbers, 

characterise solution candidates in a real problem - and the optimum choice is mainly a 

question of economics. To put lives in perspective, a life of 1000 khr represents more 

than a century of continuous running - all 

day, every day!  

The graph shows the results of repeating the 

design example in an effort to obtain the 

most compact box. Trial pinion tooth 

numbers increasing from 9 to 25 lead to 

http://www.mech.uwa.edu.au/DANotes/gears/problems/program.html
http://www.mech.uwa.edu.au/DANotes/gears/problems/program.html


modules which decrease montonically from 20 to 8 mm, pinion diameters ( D = m*z) 

which generally increase and facewidths which generally decrease. The surprising 

outcome of this study is that pinion (and hence gearbox) volume is essentially constant 

over the range studied - that is small pinion tooth numbers are not necessary for 

compactness. However the analysis recognises only two fatigue failure modes; it ignores 

eg. the possibility of tooth yield due to a single large overload - a possibility which would 

be reduced by the larger teeth associated with small tooth numbers. AGMA 2001 is 

much more comprehensive than the fatigue overview given above; it caters for overloads 

and other eventualities, and introduces a number of additional factors which we need 

not examine here.  

 

Periodic duty 

If a component is subjected to a repeating stress of constant 

magnitude,   σ i, then it will fail after   n*i application cycles - that 

is its life is   n*i cycles. At some stage prior to failure it will have 

been subjected to   n i cycles, so the cumulative damage at that 

stage ( the fraction of its life used up ) is   n i /n*i. These lives are 

shown here on a stress-life diagram which, in the case of steel 

gears and when normalised by the allowable contact stress   Sc , is just the contact life 

factor   CL examined above. It follows that for steel gears which fail by pitting :  

( 23)       n*i   =   10 ( Sc /σ i ) λ=17.93   Mc   ;       σ i ≤ 1.47 Sc  

The concept may be extended to a component under different 

stresses according to the spectrum shown below which comprises a 

block of   n1 cycles at stress magnitude   σ1, a block of   n2 cycles at   

σ2, and so on. The life of the component if   σ1 were applied alone is 

  n*1 , its life under   σ2 alone is   n*2 etc. It follows that the fraction 

of life used up in the first block is   n1 /n*1 , the fraction used up in 

the second is   n2 /n*2 etc. Assuming that the stress blocks may be treated independently, 

failure of the component occurs when the sum of the life-fractions used up by the 

various blocks (the cumulative damage) reaches 100%. That is, at failure :  

        Σ i=1 n i /n*i   =   1         Miner's Rule (strictly the 'Palmgren-Miner Rule')  

This convenient but simplistic view implies that the damage caused by a stress block is 

constant irrespective of whether block occurred at the start of loading or just before 

failure. This is not the case in practice so Miner's Rule can be rather inexact, but is 



preferred in many non-critical applications to more complex / expensive techniques for 

handling variable load fatigue such as the 'Rainflow Method' popular in aeronautical 

circles.  

 

 

EXAMPLE  

Estimate the life at 99% reliability of a 

steel gear under the given stress 

spectrum. Failure is through pitting - the 

allowable contact stress   Sc being 1.55 

GPa.  

    σ i    GPa  1.63  1.54  1.45  1.37  

    N i    rev/min  65  85  125  14  

    t i    hr  1  2  3  4  

If the gear's life is   L (khr) then the total 

number of cycles in each stress block 

over that life is :   n i = ( t i / Σt i ) L *N i  

    n i    Mc    0.39L      1.02L      2.25L      0.34L    

The life   n*i corresponds to the stress   σ i 

in each stress block acting alone, and 

follows from ( 23) :  

    n*i    Mc  4.1  11.2  33.1  91.5  

Applying Miner's Rule :   L ( 0.39/4.1 +1.02/11.2 +2.25/33.1 +0.34/91.5)   =   1  

        whence     L = 3.9 khr.  

 

 

Many components other than gears follow approximate logarithmically linear stress-life 

relationships :   σλ
i n*i   =   constant. Inserting this into Miner's Rule leads to :  

        Σ i=1 σλ
i . n i   =   constant,     and     =     σλ

e Σ i=1 n i  

                in which   σe is the equivalent stress - the single stress level which causes the 

same damage as the actual stress spectrum over the period of interest. Stress is usually 

proportional to the load raised to some index - thus for gears whch fail by pitting, the 

contact stresses are proportional to the square root of the tangential force and hence of 

the load (power or torque). Load may then be substituted for stress in the foregoing, 

leading to the ubiquitous relationship :   loadλ * life = constant.  

The life of a gear   n*i due to the power in the i'th block of a periodic load spectrum can 

be computed using ( 21) as if the power were constant and not part of a spectrum. All 

potential failure modes must be considered when applying Miner's Rule.  

 



 

In conclusion, it should be reiterated that the foregoing treatment does not pretend to 

be a recipe for instant gear design - rather it illustrates one approach to the application 

of fatigue theory, and hopefully will enable the reader to specify, apply and adapt gears 

intelligently. Gear design is an art - gear geometry and metallurgy in particular can be 

subtle.  

As AGMA 2001 puts it "This Standard is intended for use by the experienced 

gear designer capable of selecting reasonable values for the factors. It is 

not intended for use by the engineering public at large."  
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