Cutting speeds

Tool speed v. Work speed

• Milling

• Turning

Copyright © 2008 CustomPartNet

Surface feet per minute

- The speed that the tool or the work moves at the point of cut.
- SPINDLE SPEED IS
 NOT THE CUTTING
 SPEED!
- Spindle RPM = SFM/ Dia. X 3.82 x tooling correction factor

Speed chart

Cutting speed recommendations Material type	Surface feet per min (SFM)
Steel (structural)	40–60
Mild steel	90-125
Cast iron	60–80
Alloy steels	50–120
Carbon steels C1008-C1095	70–130
Free cutting steels	115–230
Stainless steels (300 & 400 series)	75–130
Copper/ Bronze	70–150
Leaded steel 12L14	275-325
Aluminum	250–350
Brass	300-750

One hour tool life, HSS, dry cut, medium feed rate, non interrupted cut, no mill scale. For coated carbide cutters with coolant, speeds may be increased by 100-200% - dependent on situation.

Example

Turn 2.000 OD 303 SS

 Experience says 120
 SFM is a good choice based on our machines and tooling

- Stainless steel is generally "difficult" to machine. Tends to seize and gall.
- Requires tool with strong cutting edge

Calculated speed:

• Lathe spindle RPM

RPM = SFM/ Dia. X 3.82 x tooling correction factor.

RPM = 120 / 2.000 x 3.82 x 2 (b/c Carbide with Titanium nitride coating) = 458 RPM

- Mill Copper with .875 HSS EM
- Experience says 135
 SFM is a good choice based on our machines and tooling

- Copper is ductile, being easily "pushed" by a cutting tool. High shear tooling required.
- Uncoated tools have sharper edgeds than coated tools

Calculated speed

- Mill spindle RPM
- RPM = SFM/ Dia. X 3.82 x tooling correction factor.

RPM = 135/.875 x 3.82 = 589 RPM