
 

Epicyclic gear trains 

An epicyclic train is often suitable when a large torque/speed ratio is required in a 

compact envelope. It is made up of a number of   elements which are interconnected to 

form the train. Each element consists of the three   components illustrated below :  

 a   central gear ( c) which rotates at angular velocity   ωc about the fixed 

axis O-O of the element, under the action of the torque   Tc applied to the 

central gear's integral shaft; this central gear may be either an external gear 

(also referred to as a sun gear) Fig 1a, or an internal gear, Fig 1b  

 an   arm ( a) which rotates at angular velocity   ωa about the same O-O axis 

under the action of the torque,   Ta - an axle A rigidly attached to the end of 

the arm carries  

 a   planet gear ( p) which rotates freely on the axle A at angular velocity   

ωp, meshing with the central gear at the pitch point P - the torque   Tp acts on 

the planet gear itself, not on its axle, A.  

 

     

 



 

The epicyclic gear photographed here without 

its arms consists of two elements. The central 

gear of one element is an external gear; the 

central gear of the other element is an 

internal gear. The three identical planets of 

one element are compounded with ( joined to 

) those of the second element.  

We shall examine first the angular velocities 

and torques in a single three-component 

element as they relate to the tooth numbers 

of central and planet gears,   zc and zp 

respectively. The kinetic relations for a complete epicyclic train consisting of two or 

more elements may then be deduced easily by combining appropriately the relations for 

the individual elements.  

All angular velocities,   ω, are absolute and constant, and the torques,   T, are external to 

the three-component element; for convenience all these variables are taken positive in 

one particular sense, say anticlockwise as here. Friction is presumed negligible, ie. the 

system is ideal.  

Separate free bodies of each of the three components - including the torques which are 

applied one to each component - are illustrated in Figs 2a and 2b for the external and 

internal central gear arrangements respectively. Also shown are the shaft centre   O and 

axle   A, the radii   Rc & Rp of the central and planet pitch cylinders, the radius of the arm 

  Ra.  

There are two contacts between the components :  

 the planet engages with the central gear at the pitch point P where the action 

/ reaction due to tooth contact is the tangential force Ft, the radial 

component being irrelevant;  

 the free rotary contact between planet gear and axle A requires a radial force 

action / reaction; the magnitude of this force at A must also be   Ft as 

sketched, for equilibrium of the planet.  

With velocities taken to be positive leftwards for example, we have for the external 

central gear :  

o geometry from Fig 2a :       Ra   =   Rc + Rp  



o velocity of P :                         vP     =   vA + vPA     so with the given senses :     ωcRc   

=   ωaRa - ωpRp  

o torques from Fig 2a :           Ft     =   -Tc / Rc   =   -Tp / Rp   =   Ta / Ra  

and for the internal central gear :  

o geometry from Fig 2a :       Ra   =   Rc - Rp  

o velocity of P :                         vP     =   vA + vPA     so with the given senses :     ωcRc   

=   ωaRa + ωpRp  

o torques from Fig 2a :           Ft     =   -Tc / Rc   =   Tp / Rp   =   Ta / Ra  

Substituting for   Ra from the geometric equations into the respective velocity and torque 

equations, and noting that   Rc/Rp   =   zc/zp, leads to the same result for both internal 

and external central gear arrangements. These are the desired relations for the three-

component element :  

( 2a)         ( ωc - ωa ) zc + ( ωp - ωa ) zp   =   0  

( 2b)         Tc / zc   =   Tp / zp   =   -Ta / ( zc + zp )  

. . . . in which   zc is taken to be a positive integer for an external central gear, 

and a negative integer for an internal central gear. 

It is apparent that the element has one degree of kinetic (torque) freedom since only 

one of the three torques may be arbitrarily defined, the other two following from the two 

equations ( 2b). On the other hand the element possesses two degrees of kinematic 

freedom, as any two of the three velocities may be arbitrarily chosen, the third being 

dictated by the single equation ( 2a).  

From ( 2b) the net external torque on the three-component element as a whole is :  

        ΣT   =   Tc + Tp + Ta   =   Tc { 1 + zp / zc - ( zc + zp )/zc }     =   0  

                which indicates that equilibrium of the element is assured.  

Energy is supplied to the element through any component whose torque and velocity 

senses are identical. From ( 2) the total external power being fed into the three-

component element is :  

        ΣP   =   Pc + Pp + Pa   =   ωcTc + ωpTp + ωaTa   =   Tc { ωc + ωp zp /zc - ωa ( zc + zp )/zc }  

                 =   Tc { ( ωc - ωa ) zc + ( ωp - ωa ) zp } / zc     =   0  

                confirming that energy is conserved in the ideal element.  

In practice, a number of identical planets are employed for 

balance and shaft load minimisation. Since ( 2) deal only with 



effects external to the element, this multiplicity of planets is analytically irrelevant 

provided   Tp is interpreted as being the total torque on all the planets, which is shared 

equally between them as suggested by the sketch here. The reason for the sun- and- 

planet terminology is obvious; the arm is often referred to as the   spider or   planet 

carrier.  

Application of the element relations to a complete train is carried out as shown in the 

example which follows. More complex epicyclic trains may be analysed in a similar 

manner, but the technique is not of much assistance when the problem is one of gear 

train design - the interested designer is referred to the Bibliography.  

 

 

EXAMPLE  

An epicyclic train consists of two three-component elements of the 

kind examined above. The first element comprises the external sun 

gear 1 and planet 2; the second comprises the planet 3 and internal 

ring gear 4. The planets 2 and 3 are compounded together on the 

common arm axles.  

Determine the relationships between the kinetic variables external to the train in terms 

of the tooth numbers z1, z2, z3 & z4.  

The train is analysed via equations ( 2) applied to the two elements in turn, together 

with the appropriate equations which set out the velocity and torque constraints across 

the interface between the two elements 1-2-arm and 3-4-arm.  

1-2-arm :  

( ω1 - ωa ) z1 + ( ω2 - ωa ) z2   =   0             from ( 2a)  

T1 / z1   =   T2 / z2   =   - T a2 / ( z1 + z2 )     from ( 2b)  

3-4-arm :  

( ω4 - ωa ) ( -z4 ) + ( ω3 - ωa ) z3   =   0                   in which z4 is a positive integer 

as  

T4 / ( - z4 )   =   T3 / z3   =   - Ta3 / ( - z4 + z3 )       central gear is internal  

Ta2 and Ta3 are the parts of the total external torque on the arm, Ta, which are 

applied individually to the two elements   1-2-arm and 3-4-arm.  

Interface :  

ω3   =   ω2       since the planets 2 & 3 are coupled  

T3   =   - T2       since the planets 2 & 3 are coupled (action/reaction)  



Ta   =   Ta2 + Ta3     as the arm is common to both elements 1-2-arm and 3-4-

arm  

Solution :  

The   basic speed ratio, io, of an epicyclic train is defined as the ratio of input to 

output speeds when the arm is held stationary.  

Neither input nor output is defined here - indeed this terminology can be confusing with 

multiple degrees of freedom - so for example select gear 1 as input, gear 4 as output.  

It follows that   io   =   ( ω1/ ω4 )ωa=0.  

Solving the three velocity equations and the six torque equations leads to the desired 

relations :  

            Velocities :     ( ω1 - ωa )   =   io ( ω4 -ωa )         where io = - z2 z4 /z1 z3  

            Torques     :     T1   =   -T4 /io   =   Ta /( io - 1 )  

Evidently this train possesses the same degrees of freedom as an individual element.  
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